Matrix Manipulations for Properties of Pell p-Numbers and their Generalizations

Özgür Erdağ, Ömür Deveci and Anthony G. Shannon

Abstract

In this paper, we define the Pell-Pell p-sequence and then we discuss the connection of the Pell-Pell p-sequence with Pell and Pell p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Pell-Pell p-numbers by the aid of the nth power of the generating matrix the Pell-Pell p-sequence. Furthermore, we obtain an exponential representation of the Pell-Pell p-numbers and we develop relationships between the Pell-Pell p-numbers and their permanent, determinant and sums of certain matrices.

1 Introduction

The well-known Pell sequence $\left\{P_{n}\right\}$ is defined by the following recurrence relation:

$$
P_{n+2}=2 P_{n+1}+P_{n} \text { for } n \geq 0 \text { in which } P_{0}=0 \text { and } P_{1}=1
$$

The generalized Pell (p, i)-numbers $\left\{P_{p}(n)\right\}$ for any given $p(p=1,2,3, \ldots)$ is defined [14] by the following recurrence equation:

$$
P_{p}^{(i)}(n)=2 P_{p}^{(i)}(n-1)+P_{p}^{(i)}(n-p-1)
$$

for $n>p+1$ and $0 \leq i \leq p$, with initial conditions $P_{p}^{(i)}(1)=\cdots=P_{p}^{(i)}(i)=0$ and $P_{p}^{(i)}(i+1)=\cdots=P_{p}^{(i)}(p+1)=1$. When $i=0$ and $p=1$, the

[^0]generalized Pell (p, i)-numbers $\left\{P_{p}(n)\right\}$ is reduced to the usual Pell sequence $\left\{P_{n}\right\}$.

It is easy to see that the characteristic polynomials of the Pell sequence and the Pell p-sequence are $f_{1}(x)=x^{2}-2 x-1$ and $f_{2}(x)=x^{p+1}-2 x^{p}-1$, respectively. We use these in the next section.

Let the $(n+k)$ th term of a sequence be defined recursively by a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1}
$$

in which $c_{0}, c_{1}, \ldots, c_{k-1}$ are real constants. In [13], Kalman derived a number of closed-form formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

$$
A=\left[a_{i, j}\right]_{k \times k}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & & c_{k-2} & c_{k-1}
\end{array}\right]
$$

then

$$
A^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

for $n \geqslant 0$.
Number theoretic properties such as those obtained from homogeneous linear recurrence relations relevant to this paper have been studied recently by many authors: see for example, $[2,5,8,9,10,11,12,21,22,23,26]$. In $[1,6,7,14,15,16,17,18,24,25,27]$, the authors defined some linear recurrence sequences and gave their various properties by matrix methods. In this paper, we discuss connections between the Pell and Pell p-numbers. Firstly, we define the Pell-Pell p-sequence and then we give recurrence relation among this sequence, the Pell and Pell p-sequences. Also, we give the relations between the generating matrix of the Pell-Pell p-numbers and the elements of the Pell and Pell p-sequences. Furthermore, using the generating matrix of the Pell-Pell p-sequence, we obtain some new structural properties of the Pell p-numbers such as the Binet formula and the combinatorial representations. Finally, we obtain an exponential representation of the Pell-Pell p-numbers
and we derive relationships between the Pell-Pell p-numbers and their sums, and permanents and, determinants of certain matrices.

2 The Main Results

Now we define the Pell-Pell p-sequence by the following homogeneous linear recurrence relation for any given $p(3,4,5, \ldots)$ and $n \geq 0$

$$
\begin{equation*}
P_{n+p+3}^{P, p}=4 P_{n+p+2}^{P, p}-3 P_{n+p+1}^{P, p}-2 P_{n+p}^{P, p}+P_{n+2}^{P, p}-2 P_{n+1}^{P, p}-P_{n}^{P, p} \tag{1}
\end{equation*}
$$

in which $P_{0}^{P, p}=\cdots=P_{p+1}^{P, p}=0$ and $P_{p+2}^{P, p}=1$.
First, we consider the relationship between the above the Pell-Pell p sequence, Pell and Pell p-sequences.

Theorem 2.1. Let $P_{n}, P_{p}(n)$ and $P_{n}^{P, p}$ be the $n t h$ Pell number, Pell p-number and Pell-Pell p-numbers, respectively, then

$$
P_{n}=P_{n+p-1}^{P, p}-P_{n}^{P, p}+P_{p}(n+p-1)
$$

for $p \geq 3$ and $n \geq 0$.
Proof. The assertion may be proved by induction on n. It is clear that $P_{0}=$ $P_{p-1}^{P, p}-P_{0}^{P, p}+P_{p}(p-1)=0$. Suppose that the equation holds for $n>0$. Then we must show that the equation holds for $n+1$. Since the characteristic polynomial of the Pell-Pell p-sequence $\left\{P_{n}^{P, p}\right\}$, is

$$
q(x)=x^{p+3}-4 x^{p+2}+3 x^{p+1}+2 x^{p}-x^{2}+2 x+1
$$

and

$$
q(x)=f_{1}(x) f_{2}(x)
$$

where $f_{1}(x)$ and $f_{2}(x)$ are the characteristic polynomials of the Pell sequence and the Pell p-sequence, respectively, we obtain the following relations:

$$
P_{n+p+3}=4 P_{n+p+2}-3 P_{n+p+1}-2 P_{n+p}+P_{n+2}-2 P_{n+1}-P_{n}
$$

and
$P_{p}(n+p+3)=4 P_{p}(n+p+2)-3 P_{p}(n+p+1)-2 P_{p}(n+p)+P_{p}(n+2)-2 P_{p}(n+1)-P_{p}(n)$
for $n>0$. Thus, the conclusion is obtained.

From the recurrence relation (1), we have

$$
\left[\begin{array}{c}
P_{n}^{P, p} \\
P_{n, p+2}^{P+p+1} \\
P_{n+p}^{P, p} \\
\vdots \\
P_{n}^{P, p}
\end{array}\right]\left[\begin{array}{cccccccccc}
4 & -3 & -2 & 0 & \cdots & 0 & 0 & 1 & -2 & -1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{c}
P_{n}^{P, p} \\
P_{n, p}^{P+p+3} \\
P_{n+p}^{P+p+2} \\
\vdots+p+1 \\
\vdots \\
P_{n+p}^{P, p}
\end{array}\right]
$$

for the Pell-Pell p-sequence $\left\{P_{n}^{P, p}\right\}$. Now we define

$$
A_{p}=\left[\begin{array}{cccccccccc}
4 & -3 & -2 & 0 & \cdots & 0 & 0 & 1 & -2 & -1 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0
\end{array}\right]_{(p+3) \times(p+3)}
$$

The companion matrix $A_{p}=\left[a_{i, j}\right]_{(p+3) \times(p+3)}$ is said to be the Pell-Pell p matrix. For more details on the companion type matrices, see [19, 20]. From induction on n, we get
$\left(A_{p}\right)^{n}=\left[\begin{array}{ccccc}P_{n}^{P, p} \\ P_{n}+p+2 & -4 P_{n+p}^{P, p}+P_{n}+P_{n}+P_{n-p+1} & -2 P_{n+p}^{P, p}+P_{p}(n+1) & P_{p}(n+2) & \cdots \\ P_{n+p}^{P+p+1} & -4 P_{n, p}^{P, p+P_{n-1}+P_{n-p}} & -2 P_{n, p}^{P, p}+P_{p}(n) & P_{p}(n+1) & \cdots \\ P_{n+p}^{P, p} & -4 P_{n+p-1}^{P, p}+P_{n-2}+P_{n-p-1} & -2 P_{n+p-1}^{P, p}+P_{p}(n-1) & P_{p}(n) & \cdots A_{p}^{*} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n}^{P, p} & -4 P_{n}^{P, p}+P_{n-p-1}+P_{n-2 p} & -2 P_{n}^{P, p}+P_{p}(n-p) & P_{p}(n-p+1) \cdots \\ P_{n}^{P, p} & -4 P_{n-1}^{P, p}+P_{n-p-2}+P_{n-2 p-1} & -2 P_{n-p}^{P, p}+P_{p}(n-p-1) & P_{p}(n-p) & \cdots\end{array}\right]$,
for $n \geq 2 p+1$, where

It is clear that $\operatorname{det} A_{p}=(-1)^{p+1}$.
In [14], Kılıc gave a Binet formula for the Pell p-numbers by matrix method. Now we concentrate on finding another Binet formula for the Pell-Pell p numbers by the aid of the matrix $\left(A_{p}\right)^{n}$.

Lemma 2.1. The characteristic equation of all the Pell-Pell p-numbers $x^{p+3}-$ $4 x^{p+2}+3 x^{p+1}+2 x^{p}-x^{2}+2 x+1=0$ does not have multiple roots for $p \geq 3$.
Proof. It is clear that $x^{p+3}-4 x^{p+2}+3 x^{p+1}+2 x^{p}-x^{2}+2 x+1=\left(x^{p+1}-2 x^{p}-1\right)$ $\left(x^{2}-2 x-1\right)$. In [14], it was shown that the equation $x^{p+1}-2 x^{p}-1=0$ does not have multiple roots for $p>1$. It is easy to see that the roots of the equation $x^{2}-2 x-1=0$ are $1+\sqrt{2}$ and $1-\sqrt{2}$. Since $(1+\sqrt{2})^{p+1}-$ $2(1+\sqrt{2})^{p}-1 \neq 0$ and $(1-\sqrt{2})^{p+1}-2(1-\sqrt{2})^{p}-1 \neq 0$ for $p>1$, the equation $x^{p+3}-4 x^{p+2}+3 x^{p+1}+2 x^{p}-x^{2}+2 x+1=0$ does not have multiple roots for $p \geq 3$.

Let $x_{1}, x_{2}, \ldots, x_{p+3}$ be the roots of the equation $x^{p+3}-4 x^{p+2}+3 x^{p+1}+$ $2 x^{p}-x^{2}+2 x+1=0$ and let V_{p} be a $(p+3) \times(p+3)$ Vandermonde matrix as follows:

$$
V_{p}=\left[\begin{array}{cccc}
\left(x_{1}\right)^{p+2} & \left(x_{2}\right)^{p+2} & \ldots & \left(x_{p+3}\right)^{p+2} \\
\left(x_{1}\right)^{p+1} & \left(x_{2}\right)^{p+1} & \ldots & \left(x_{p+3}\right)^{p+1} \\
\vdots & \vdots & & \vdots \\
x_{1} & x_{2} & \ldots & x_{p+3} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Assume that $V_{p}(i, j)$ is a $(p+3) \times(p+3)$ matrix derived from the Vandermonde matrix V_{p} by replacing the $j^{t h}$ column of V_{p} by $W_{p}(i)$, where, $W_{p}(i)$ is a $(p+3) \times 1$ matrix as follows:

$$
W_{p}=\left[\begin{array}{c}
\left(x_{1}\right)^{n+p+3-i} \\
\left(x_{2}\right)^{n+p+3-i} \\
\vdots \\
\left(x_{p+3}\right)^{n+p+3-i}
\end{array}\right]
$$

Theorem 2.2. Let p be a positive integer such that $p \geq 3$ and let $\left(A_{p}\right)^{n}=$ $\left[a_{i, j}^{(p, n)}\right]$ for $n \geq 1$, then

$$
a_{i, j}^{(p, n)}=\frac{\operatorname{det} V_{p}^{(i, j)}}{\operatorname{det} V_{p}}
$$

Proof. Since the equation $x^{p+3}-4 x^{p+2}+3 x^{p+1}+2 x^{p}-x^{2}+2 x+1=0$ does not have multiple roots for $p \geq 3$, the eigenvalues of the Pell-Pell p matrix A_{p} are distinct. Then, it is clear that A_{p} is diagonalizable. Let $D_{p}=$ $\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{p+3}\right)$, then we may write $A_{p} V_{p}=V_{p} D_{p}$. Since the matrix V_{p} is invertible, we obtain the equation $\left(V_{p}\right)^{-1} A_{p} V_{p}=D_{p}$. Therefore, A_{p} is similar to D_{p}; hence, $\left(A_{p}\right)^{n} V_{p}=V_{p}\left(D_{p}\right)^{n}$ for $n \geq 1$. So we have the following linear system of equations:

$$
\left\{\begin{array}{c}
a_{i, 1}^{(p, n)}\left(x_{1}\right)^{p+2}+a_{i, 2}^{(p, n)}\left(x_{1}\right)^{p+1}+\cdots+a_{i, p+3}^{(p, n)}=\left(x_{1}\right)^{n+p+3-i} \\
a_{i, 1}^{(p, n)}\left(x_{2}\right)^{p+2}+a_{i, 2}^{(p, n)}\left(x_{2}\right)^{p+1}+\cdots+a_{i, p+3}^{(p+3)}=\left(x_{2}\right)^{n+p+3-i} \\
\vdots \\
a_{i, 1}^{(p, n)}\left(x_{p+3}\right)^{p+2}+a_{i, 2}^{(p, n)}\left(x_{p+3}\right)^{p+1}+\cdots+a_{i, p+3}^{(p, n)}=\left(x_{p+3}\right)^{n+p+3-i}
\end{array}\right.
$$

Then we conclude that

$$
a_{i, j}^{(p, n)}=\frac{\operatorname{det} V_{p}^{(i, j)}}{\operatorname{det} V_{p}}
$$

for each $i, j=1,2, \ldots, p+3$.
Thus by Theorem 2.2 and the matrix $\left(A_{p}\right)^{n}$, we have the following useful result for the Pell-Pell p-numbers.

Corollary 2.3. Let p be a positive integer such that $p \geq 3$ and let $P_{n}^{P, p}$ be the nth element of Pell-Pell p-number, then

$$
P_{n}^{P, p}=\frac{\operatorname{det} V_{p}(p+3,1)}{\operatorname{det} V_{p}}
$$

and

$$
P_{n}^{P, p}=-\frac{\operatorname{det} V_{p}(p+2, p+3)}{\operatorname{det} V_{p}}
$$

for $n \geq 1$.
It is easy to see that the generating function of the Pell-Pell p-sequence $\left\{P_{n}^{P, p}\right\}$ is as follows:

$$
g^{(p)}(x)=\frac{x^{p+2}}{1-4 x+3 x^{2}+2 x^{3}-x^{p+1}+2 x^{p+2}+x^{p+3}}
$$

where $\mathrm{p} \geqslant 3$.
Then we can give an exponential representation for the Pell-Pell p-numbers by the aid of the generating function with the following Theorem.

Theorem 2.4. The Pell-Pell p-sequences $\left\{P_{n}^{P, p}\right\}$ have the following exponential representation:

$$
g^{(p)}(x)=x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(4-3 x-2 x^{2}+x^{p}-2 x^{p+1}-x^{p+2}\right)^{i}\right)
$$

where $p \geqslant 3$.
Proof. Since

$$
\ln g^{(p)}(x)=\ln x^{p+2}-\ln \left(1-4 x+3 x^{2}+2 x^{3}-x^{p+1}+2 x^{p+2}+x^{p+3}\right)
$$

and

$$
\begin{aligned}
& -\ln \left(1-4 x+3 x^{2}+2 x^{3}-x^{p+1}+2 x^{p+2}+x^{p+3}\right)=-\left[-x\left(4-3 x-2 x^{2}+x^{p}-2 x^{p+1}-x^{p+2}\right)-\right. \\
& \left.\frac{1}{2} x^{2}\left(4-3 x-2 x^{2}+x^{p}-2 x^{p+1}-x^{p+2}\right)^{2}-\cdots-\frac{1}{i} x^{i}\left(4-3 x-2 x^{2}+x^{p}-2 x^{p+1}-x^{p+2}\right)^{i}-\cdots\right]
\end{aligned}
$$

it is clear that

$$
g^{(p)}(x)=x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(4-3 x-2 x^{2}+x^{p}-2 x^{p+1}-x^{p+2}\right)^{i}\right)
$$

by a simple calculation, we obtain the conclusion.
Let $K\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ be a $v \times v$ companion matrix as follows:

$$
K\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\left[\begin{array}{cccc}
k_{1} & k_{2} & \cdots & k_{v} \\
1 & 0 & & 0 \\
\vdots & \ddots & & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right]
$$

Theorem 2.5. (Chen and Louck [4]) The (i, j) entry $k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ in the matrix $K^{n}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ is given by the following formula:
$k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{v}\right)} \frac{t_{j}+t_{j+1}+\cdots+t_{v}}{t_{1}+t_{2}+\cdots+t_{v}} \times\binom{ t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}} k_{1}^{t_{1}} \cdots k_{v}^{t_{v}}$
where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+$ $v t_{v}=n-i+j,\binom{t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}}=\frac{\left(t_{1}+\cdots+t_{v}\right) \text { ! }}{t_{1}!\cdots t_{v}!}$ is a multinomial coefficient, and the coefficients in (2) are defined to be 1 if $n=i-j$.

Then we can give other combinatorial representations than for the Pell-Pell p-numbers by the following Corollary.

Corollary 2.6. i.

$$
P_{n}^{P, p}=\sum_{\left(t_{1}, t_{2}, \ldots, t_{p+3}\right)}\binom{t_{1}+t_{2}+\cdots+t_{p+3}}{t_{1}, t_{2}, \ldots, t_{p+3}} 4^{t_{1}}(-3)^{t_{2}}(-2)^{t_{3}+t_{p+2}}(-1)^{t_{p+3}},(n \geq 1)
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+$ $(p+3) t_{p+3}=n-p-2$.
ii.
$P_{n}^{P, p}=-\sum_{\left(t_{1}, t_{2}, \ldots, t_{p+3}\right)} \frac{t_{p+3}}{t_{1}+t_{2}+\cdots+t_{p+3}} \times\binom{ t_{1}+t_{2}+\cdots+t_{p+3}}{t_{1}, t_{2}, \ldots, t_{p+3}} 4^{t_{1}}(-3)^{t_{2}}(-2)^{t_{3}+t_{p+2}}(-1)^{t_{p+3}}$ $n \geq 1$, where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+$ $\cdots+(p+3) t_{p+3}=n+1$.

Proof. If we take $i=p+3, j=1$ for the case i. and $i=p+2, j=p+3$ for the case ii. in Theorem 2.5, then we can directly see the conclusions from $\left(A_{p}\right)^{n}$.

Now we consider the permanental representations for the Pell-Pell p-numbers.
Definition 2.1. A $u \times v$ real matrix $M=\left[m_{i, j}\right]$ is called a contractible matrix in the $k^{\text {th }}$ column (resp. row.) if the $k^{\text {th }}$ column (resp. row.) contains exactly two non-zero entries.

Suppose that $x_{1}, x_{2}, \ldots, x_{u}$ are row vectors of the matrix M. If M is contractible in the $k^{\text {th }}$ column such that $m_{i, k} \neq 0, m_{j, k} \neq 0$ and $i \neq j$, then the $(u-1) \times(v-1)$ matrix $M_{i j: k}$ obtained from M by replacing the $i^{\text {th }}$ row with $m_{i, k} x_{j}+m_{j, k} x_{i}$ and deleting the $j^{\text {th }}$ row. The $k^{\text {th }}$ column is called the contraction in the $k^{\text {th }}$ column relative to the $i^{\text {th }}$ row and the $j^{\text {th }}$ row.

In [3], Brualdi and Gibson obtained that $\operatorname{per}(M)=\operatorname{per}(N)$ if M is a real matrix of order $\alpha>1$ and N is a contraction of M.

Now we concentrate on finding relationships among the Pell-Pell p-numbers and the permanents of certain matrices which are obtained by using the generating matrix of the Pell-Pell p-numbers. Let $P_{m, p}^{P}=\left[p_{i, j}^{(p)}\right]$ be the $m \times m$
super-diagonal matrix, defined by

$$
p_{i, j}^{(p)}=\left\{\begin{array}{cc}
4 & \text { if } i=r \text { and } j=r \text { for } 1 \leq r \leq m, \\
\text { if } i=r+1 \text { and } j=r \text { for } 1 \leq r \leq m-1 \\
\text { and } \\
1 & i=r \text { and } j=r+p \text { for } 1 \leq r \leq m-p, \\
-1 & \text { if } i=r \text { and } j=r+p+2 \text { for } 1 \leq r \leq m-p-2, \\
\text { if } i=r \text { and } j=r+2 \text { for } 1 \leq r \leq m-2 \\
-2 & \text { and } \\
-3=r \text { and } j=r+p+1 \text { for } 1 \leq r \leq m-p-1, ~ f o r ~ & m \geq p+3 . \\
-3 & \text { if } i=r \text { and } j=r+1 \text { for } 1 \leq r \leq m-1, \\
0 & \text { otherwise. }
\end{array},\right.
$$

Then we have the following Theorem.
Theorem 2.7. For $m \geqslant p+3$,

$$
\operatorname{per} P_{m, p}^{P}=P_{m+p+2}^{P, p}
$$

Proof. Let us consider the matrix $P_{m, p}^{P}$ and let the equation be hold for $m \geqslant$ $p+3$. Then we show that the equation holds for $m+1$. If we expand the $\operatorname{per} P_{m, p}^{P}$ by the Laplace expansion of permanent with respect to the first row, then we obtain
$\operatorname{per} P_{m+1, p}^{P}=4 \operatorname{per} P_{m, p}^{P}-3 \operatorname{per} P_{m-1, p}^{P}-2 \operatorname{per} P_{m-2, p}^{P}+\operatorname{per} P_{m-p, p}^{P}-2 \operatorname{per} P_{m-p-1, p}^{P}-\operatorname{per} P_{m-p-2, p}^{P}$.
Since

$$
\begin{gathered}
\operatorname{per} P_{m, p}^{P}=P_{m+p+2}^{P, p}, \\
\operatorname{per} P_{m-1, p}^{P}=P_{m+p+1}^{P, p} \\
\operatorname{per} P_{m-2, p}^{P}=P_{m+p}^{P, p} \\
\operatorname{per} P_{m-p, p}^{P}=P_{m+2}^{P, p} \\
\operatorname{per} P_{m-p-1, p}^{P}=P_{m+1}^{P, p}
\end{gathered}
$$

and

$$
\operatorname{per} P_{m-p-2, p}^{P}=P_{m}^{P, p}
$$

it is clear that $\operatorname{per} P_{m+1, p}^{P}=P_{m+p+3}^{P, p}$. So the proof is complete.

Let $R_{m, p}^{P}=\left[r_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
r_{i, j}^{(p)}=\left\{\begin{array}{cc}
4 & \text { if } i=r \text { and } j=r \text { for } 1 \leq r \leq m-p-1, \\
\text { if } i=r \text { and } j=r \text { for } m-p \leq r \leq m, \\
1 & i=r+1 \text { and } j=r \text { for } 1 \leq r \leq m-p-2 \\
\text { and } \\
-1 & \begin{array}{c}
i=r \text { and } j=r+p \text { for } 1 \leq r \leq m-p, \\
\text { if } i=r \text { and } j=r+p+2 \text { for } 1 \leq r \leq m-p-2, \quad \text { for } m \geq p+3 \\
\text { if } i=r \text { and } j=r+2 \text { for } 1 \leq r \leq m-p-1
\end{array} \\
-2 & \text { and } \\
& \begin{array}{c}
i=r \text { and } j=r+p+1 \text { for } 1 \leq r \leq m-p-1, \\
-3 \\
0
\end{array} \\
\text { if } i=r \text { and } j=r+1 \text { for } 1 \leq r \leq m-p-1, \\
\text { otherwise. }
\end{array}\right.
$$

Then we have the following Theorem.

Theorem 2.8. For $m \geqslant p+3$,

$$
\operatorname{per} R_{m, p}^{P}=P_{m+1}^{P, p}
$$

Proof. Let us consider the matrix $R_{m, p}^{P}$ and let the equation hold for $m \geq p+3$. Then we show that the equation holds for $m+1$. If we expand $\operatorname{per} R_{m, p}^{P}$ by the Laplace expansion of permanent according to the first row, then we obtain
$\operatorname{per} R_{m+1, p}^{P}=4 \operatorname{per} R_{m, p}^{P}-3 \operatorname{per} R_{m-1, p}^{P}-2 \operatorname{per} R_{m-2, p}^{P}+\operatorname{per} R_{m-p, p}^{P}-2 \operatorname{per} R_{m-p-1, p}^{P}-\operatorname{per} R_{m-p-2, p}^{P}$.
Also, since

$$
\begin{gathered}
\operatorname{per} R_{m, p}^{P}=P_{m+1}^{P, p}, \\
\operatorname{per} R_{m-1, p}^{P}=P_{m}^{P, p} \\
\operatorname{per} R_{m-2, p}^{P}=P_{m-1}^{P, p}, \\
\operatorname{per} R_{m-p, p}^{P}=P_{m-p+1}^{P, p}, \\
\operatorname{per} R_{m-p-1, p}^{P}=P_{m-p}^{P, p}
\end{gathered}
$$

and

$$
\operatorname{per} R_{m-p-2, p}^{P}=P_{m-p-1}^{P, p},
$$

it is clear that $\operatorname{per} R_{m+1, p}^{P}=P_{m+2}^{P, p}$. So the proof is complete.

Assume that $S_{m, p}^{P}=\left[s_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
\begin{aligned}
& (m-p-1) \text { th } \\
& \downarrow \\
& S_{m, p}^{P}=\left[\begin{array}{cccccc}
1 & \cdots & 1 & 0 & \cdots & 0 \\
1 & & & & & \\
0 & & & & & \\
\vdots & & & R_{m-1, p}^{P} & & \\
0 & & & & & \\
0 & & & & &
\end{array}\right], \text { for } m>p+3,
\end{aligned}
$$

then we have the following results:
Theorem 2.9. For $m>p+3$,

$$
\operatorname{per} S_{m, p}^{P}=\sum_{i=0}^{m} P_{i}^{P, p}
$$

Proof. If we expand the $\operatorname{per} S_{m, p}^{P}$ with respect to the first row, we write

$$
\operatorname{per} S_{m, p}^{P}=\operatorname{per} S_{m-1, p}^{P}+\operatorname{per} R_{m-1, p}^{P}
$$

Thus, by the results and an inductive argument, the proof is easily seen.
A matrix M is called convertible if there is an $n \times n(1,-1)$-matrix K such that $\operatorname{per} M=\operatorname{det}(M \circ K)$, where $M \circ K$ denotes the Hadamard product of M and K.

Now we give relationships among the Pell-Pell p-numbers and the determinants of certain matrices which are obtained by using the matrix $P_{m, p}^{P}, R_{m, p}^{P}$ and $S_{m, p}^{P}$. Let $m>p+3$ and let H be the $m \times m$ matrix, defined by

$$
H=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 1 & \cdots & 1 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & -1 & 1 & 1 \\
1 & \cdots & 1 & 1 & -1 & 1
\end{array}\right]
$$

Corollary 2.10. For $m>p+3$,

$$
\operatorname{det}\left(P_{m, p}^{P} \circ H\right)=P_{m+p+2}^{P, p}
$$

$$
\operatorname{det}\left(R_{m, p}^{P} \circ H\right)=P_{m+1}^{P, p},
$$

and

$$
\operatorname{det}\left(S_{m, p}^{P} \circ H\right)=\sum_{i=0}^{m} P_{i}^{P, p}
$$

Proof. Since per $P_{m, p}^{P}=\operatorname{det}\left(P_{m, p}^{P} \circ H\right), \operatorname{per} R_{m, p}^{P}=\operatorname{det}\left(R_{m, p}^{P} \circ H\right)$ and $\operatorname{per} S_{m, p}^{P}$ $=\operatorname{det}\left(S_{m, p}^{P} \circ H\right)$ for $m>p+3$, by Theorem 2.7, Theorem 2.8 and Theorem 2.9, we have the conclusion.

Now we consider the sums of the Pell-Pell p-numbers. Let

$$
S_{n}=\sum_{i=0}^{n} P_{i}^{P, p}
$$

for $n \geq 1$ and let Y_{P}^{p} and $\left(Y_{P}^{p}\right)^{n}$ be the $(p+4) \times(p+4)$ matrices such that

$$
Y_{P}^{p}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & & & & & & \\
0 & & & & & & \\
\vdots & & & A_{p} & & & \\
0 & & & & & & \\
0 & & & & & & \\
0 & & & & & &
\end{array}\right], \text { for } p \geqslant 3
$$

If we use induction on n, then we obtain

$$
\left(Y_{P}^{p}\right)^{n}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
S_{n+p+1} & & & & & & \\
S_{n+p} & & & & & & \\
\vdots & & & \left(A_{p}\right)^{n} & & & \\
S_{n+1} & & & & & & \\
S_{n} & & & & & & \\
S_{n-1} & & & & & &
\end{array}\right], \text { for } p \geq 3
$$

References

[1] Y. Akuzum, O. Deveci and A. G. Shannon, On the Pell p-circulant Sequences, Notes on Number Theory and Disc. Math., 23 (2017), no. 2, 91-103.
[2] B. Bradie, Extension and refinements of some properties of sums involving Pell number, Missouri J.Math. Sci., 22 (2010), no. 1, 37-43.
[3] R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices I: applications of permanent function, J. Combin. Theory, Series A, 22 (1997), no. 2, 194-230.
[4] W. Y. C. Chen and J. D. Louck, The combinatorial power of the companion matrix, Linear Algebra Appl., 232 (1996), 261-278.
[5] R. Devaney, The Mandelbrot set and the Farey tree, and the Fibonacci sequence, Amer. Math. Monthly, 106 (1999), 289-302.
[6] O. Deveci, The Pell-Circulant Sequences and Their Applications, Maejo Int. J. Sci. Technol., 10 (2016), no. 03, 284-293.
[7] O. Deveci and E. Karaduman, On the Padovan p-numbers, Hacettepe J. Math. Stat., 46 (2017), no. 4, 579-592.
[8] D. D. Frey and J. A. Sellers, Jacobsthal numbers and alternating sign matrices, J. Integer Seq., 3 (2000), Article 00.2.3.
[9] N. Gogin and A. A. Myllari, The Fibonacci-Padovan sequence and MacWilliams transform matrices, Programing and Computer Software, published in Programmirovanie, 33 (2007), no. 2, 74-79.
[10] A. F. Horadam, Jacobsthal representations numbers, Fibonacci Quart., 34 (1996), 40-54.
[11] A. F. Horadam, Applications of modified Pell numbers to representations, Ulam Quart., 3 (1994), no. 1, 34-53.
[12] B. Johnson, Fibonacci identities by matrix methods and generalisation to related sequences, http://maths.dur.ac.uk/~ $\mathrm{dmaOrcj} / \mathrm{PED} / \mathrm{fib} . \mathrm{pdf}$, March 25, 2003.
[13] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart., 20 (1982), no. 1, 73-76.
[14] E. Kilic, The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums, Chaos, Solitons Fractals, 40 (2009), no. 4, 2047-2063.
[15] E. Kilic, The Binet fomula, sums and representations of generalized Fibonacci p-numbers, Eur. J. Comb., 29 (2008), 701-711.
[16] E. Kilic and D.Tasci, The generalized Binet formula, representation and sums of the generalized order-k Pell numbers, Taiwanese J. Math., 10 (2006), no. 6, 1661-1670.
[17] E. G. Kocer, The Binet formulas for the Pell and Pell-Lucas p-numbers, Ars Comb., 85 (2007), 3-17.
[18] F. Koken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sciences. 3 (2008), no. 13, 605-614.
[19] P. Lancaster and M. Tismenetsky, The theory of matrices: with applications, Elsevier, 1985.
[20] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge UP, 1986.
[21] W. L. McDaniel, Triangular numbers in the Pell sequence, Fibonacci Quart., 34 (1996), 105-107.
[22] A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of cordonnier Perrin and Van der Lan numbers, Internat. J. Math. Ed. Sci. Tech., 37 (2006), no. 7, 825-831.
[23] A. G. Shannon, A. F. Horadam and P. G. Anderson, The auxiliary equation associated with plastic number, Notes on Number Theory and Disc. Math., 12 (2006), no. 1, 1-12.
[24] A.P. Stakhov, A generalization of the Fibonacci Q-matrix, Rep. Natl. Acad. Sci. Ukraine, 9 (1999), 46-49.
[25] A. P. Stakhov, B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitions Fractals, 27 (2006), 1162-77.
[26] I. Stewart, Tales of a neglected number, Sci. Amer. 274 (1996), 102-103.
[27] D. Tasci and M. C. Firengiz, Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modell., 52 (2010), 1763-1770.

Özgür Erdağ,
Department of Mathematics,
Faculty of Science and Letters,
Kafkas University,36100-Kars, Turkey.
Email: ozgur_erdag@hotmail.com
Ömür Deveci,
Department of Mathematics,
Faculty of Science and Letters,
Kafkas University,36100-Kars, Turkey.
Email: odeveci36@hotmail.com
Anthony G. Shannon,
Faculty of Engineering \& IT,
University of Technology,
Sydney, NSW 2007, Australia.
Email: tshannon38@gmail.com

[^0]: Key Words: Pell sequence, Pell p-sequence, Matrix, Representation.
 2010 Mathematics Subject Classification: 11K31; 11C20; 15A15.
 Received: 31.10.2019.
 Accepted: 09.01.2020.

